Fischer Matrices for Generalised Symmetric Groups—A Combinatorial Approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Proofs of Identities Involving Symmetric Matrices

Brualdi and Ma found a connection between involutions of length n with k descents and symmetric k×k matrices with non-negative integer entries summing to n and having no row or column of zeros. From their main theorem they derived two alternating sums by algebraic means and asked for combinatorial proofs. The purpose of this note is to give such demonstrations.

متن کامل

Combinatorial characterization of the null spaces of symmetric H-matrices

We characterize the structure of null spaces of symmetric diagonally dominant (SDD) matrices and symmetric H-matrices with non-negative diagonal entries. We show that the structure of the null space of a symmetric SDD matrix or H-matrix A depends on the structure of the connected components of its underlying graph. Each connected component contributes at most one vector to the null space. This ...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

A Generalised Network Flow Approach to Combinatorial Auctions

In this paper we address the problem of (1) representing bids for combinatorial auctions and (2) employing those structures for “reasoning”. We propose a graph-based language who’s novelty lies (1) in the use of generalized network flows to represent the bids and (2) in the interpretation of winner determination as an adequate aggregation of individual preferences. We motivate the language both...

متن کامل

the second immanant of some combinatorial matrices

let $a = (a_{i,j})_{1 leq i,j leq n}$ be an $n times n$ matrixwhere $n geq 2$. let $dt(a)$, its second immanant be the immanant corresponding to the partition $lambda_2 = 2,1^{n-2}$. let $g$ be a connected graph with blocks $b_1, b_2, ldots b_p$ and with$q$-exponential distance matrix $ed_g$. we given an explicitformula for $dt(ed_g)$ which shows that $dt(ed_g)$ is independent of the manner in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2002

ISSN: 0001-8708

DOI: 10.1006/aima.2001.2043